Estimating conditioning of BVPs for ODEs
نویسندگان
چکیده
Abst rac t -An alternative to control of the global error of a numerical solution to a boundary value problem (BVP) for ordinary differential equations (ODEs) is control of its residual, the amount by which it fails to satisfy the ODEs and boundary conditions. Among the methods used by codes tha t control residuals are collocation, Runge-Kut ta methods with continuous extensions, and shooting. Specific codes tha t concern us are bvp4c of the MATLAB problem solving environment and the FORTRAN code MIRKDC for general scientific computation. The residual of a numerical solution is related to its global error by a conditioning constant. In this paper, we investigate a conditioning constant appropriate for BVP solvers tha t control residuals and show how to est imate it numerically at a modest cost. Codes tha t control residuals can compute pseudosolutions, numerical solutions to BVPs tha t do not have solutions. Tha t is, a "well-behaved" approximate solution is computed for an ill-posed mathematical problem. The estimate of conditioning is used to improve the robustness of bvp4c and MIRKDC and in particular, help users identify when a pseudosolution may have been computed. (~) 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Singular boundary value problems for ODEs
This paper is concerned with the numerical solution of a system of ordinary di erential equations ODEs y Sy t f t y p on an inter val b subject to boundary conditions g y y b p The ODEs have a coe cient that is singular at t but it is assumed that the boundary value problem BVP has a smooth solution Some popular methods for BVPs evaluate the ODEs at t This paper deals with the practical issues ...
متن کاملA Problem-Solving Environment for the Numerical Solution of Boundary Value Problems
Boundary value problems (BVPs) are systems of ordinary differential equations (ODEs) with boundary conditions imposed at two or more distinct points. Such problems arise within mathematical models in a wide variety of applications. Numerically solving BVPs for ODEs generally requires the use of a series of complex numerical algorithms. Fortunately, when users are required to solve a BVP, they h...
متن کاملThe Parallel Solution of Almost Block Diagonal Systems Arising in Numerical Methods for BVPs for ODEs
Three parallel algorithms are presented for solving the Almost Block Diagonal (ABD) systems of linear algebraic equations that arise during the numerical solution of Boundary Value Problems (BVPs) for Ordinary Differential Equations (ODEs). Until recently, the solution of these systems has proven to be the execution-time bottleneck in the parallel implementation of most BVP codes. Several numer...
متن کاملNew Parallel Algorithms for BVPs in ODEs
صخلملا لئاسـم لـحل ةيزاوتم ةديدج ةقيرط ريوطت وه يسيئرلا ثحبلا اذه فده لضافتلا تلاداعملا يف ةيموختلا ميقلا ةيزاوتم تابساح يف ذيفنتلل ةمئلام ةيدايتعلاا ةي عون نم MIMD ) دحاو نآ يف ةددعتم تايلمع تاذ تابساح .( ةيـصاخ ةسارد تمت ةداـيز قـيرط نع ةقيرطلا نيسحت متو ةقيرطلل أطخلا ىلع ةرطيسلاو ةيرارقتسلأا يعجرلا لماكتلاو تانيمختلا ددع . ةـفاجلا ةـيموختلا ميـقلا لئاسم ةجلاعم تمت امك ةركتبملا ةقيرطلاب . A...
متن کاملSelf-accelerating two-step Steffensen-type methods with memory and their applications on the solution of nonlinear BVPs
In this paper, seven self-accelerating iterative methods with memory are derived from an optimal two-step Steffensen-type method without memory for solving nonlinear equations, their orders of convergence are proved to be increased from 4 to 2 6 , (5 17) / 2 ,5 and (5 33) / 2 , numerical examples are demonstrat-ed demonstrated to verify the theoretical results, and applications for solving syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical and Computer Modelling
دوره 40 شماره
صفحات -
تاریخ انتشار 2004